Complex geometry of quantum cones

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorics and geometry of Littlewood-Richardson cones

We present several direct bijections between different combinatorial interpretations of the Littlewood-Richardson coefficients. The bijections are defined by explicit linear maps which have other applications.

متن کامل

On the geometry of exotic nilpotent cones

This paper is a sequel to [K]. Let G be a complex symplectic group. In [K], we constructed a certain G-variety N = N1, which we call the (1-) exotic nilpotent cone. In this paper, we study the set of G-orbits of the variety N. It turns out that the variety N gives a variant of the Springer correspondence for the Weyl group of type C, but shares a similar flavor with that of type A case. (I.e. t...

متن کامل

Projective Geometry II: Cones and Complete Classifications

The aim of this paper and its prequel is to introduce and classify the irreducible holonomy algebras of the projective Tractor connection. This is achieved through the construction of a ‘projective cone’, a Ricci-flat manifold one dimension higher whose affine holonomy is equal to the Tractor holonomy of the underlying manifold. This paper uses the result to enable the construction of manifolds...

متن کامل

Hypermultiplets, Hyperkähler Cones and Quaternion-Kähler Geometry

We study hyperkähler cones and their corresponding quaternion-Kähler spaces. We present a classification of 4(n − 1)-dimensional quaternionKähler spaces with n abelian quaternionic isometries, based on dualizing superconformal tensor multiplets. These manifolds characterize the geometry of the hypermultiplet sector of perturbative moduli spaces of type-II strings compactified on a Calabi-Yau ma...

متن کامل

Moduli of complex curves and noncommutative geometry I: classification of complex and quantum tori

This paper is a brief account of the moduli of complex curves from the perspective of noncommutative geometry. We focus on problems of Riemann surface theory, which can be settled using K-groups of a noncommutative C∗-algebra. On this way, we prove “generic” arithmeticity of the mapping class group and study correspondences between complex and noncommutative tori.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fortschritte der Physik

سال: 2014

ISSN: 0015-8208

DOI: 10.1002/prop.201400051